les faus:

Boylet faw: For fisced amount of gas at constant temperature, Volume occupied by the gas is inversely Propartional to pressure of the

> =) $V \propto \frac{1}{P}$ =) Hence, PV = constant(K)=) $P_1V_1 = P_2V_2$

Graphical Representation of Boyles Law:

1 P v/s V:

- (ii) PV 1/5 V: PV
- (jii) PV 1/5 P: PV

(i) Charles Law: For Fixed amount of gas at constant Pressure:

T-> Temp on absolute Scale, Kelvin Scale.

Igraphical Representation

(): V v/s t(c):

-273.15°C t(c)

(i) V v/s T:

Important Points:

- Since volume is proportional to absolute temperature, the volume of a gas should be theoretically zero at absolute zero temperature.
- In fact, no substance exists as gas at a temperature near absolute zero, though the straight line
 plots can be inter polated to zero volume. Absolute zero can never be attained practically though
 it can be approached only.
- By considering –273.15°C as the lowest approachable limit, Kelvin developed temperature scale which is known as absolute scale.

Where T is temp in absolute scale.

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

(iv): Avogadros Law:

Equal volumes of all gases under similar conditions of Temp and Pressure contains equal number of molecules or moles of molecules (not atoms)

Where N= Number of molecules

& m = Number of molecules.

$$\frac{V_1}{N_1} = \frac{V_2}{N_2} \quad \text{or} \quad \frac{V_1}{m_1} = \frac{V_2}{m_2}$$